Sync Rules

Last Modified on 01/15/2026 7:57 pm EST

Exalate uses synchronization rules (Sync Rules) to handle outgoing and incoming messages. You
can find Sync Rules as a separate tab when you select the connection to edit.

Note: For script connections, Exalate is using the Monaco editor with Groovy support.

Note: Starting with Exalate v. 8.5.1 we are running Groovy v. 4.

http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:synchronization
http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:sync+rules
http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:sync
http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:incoming+sync
http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:outgoing+sync

Rules Triggers Statistics Info

Dark Mode D

v Outgoing sync W
Qutgoing sync rules define what Information can be sent to the destination instance. Check the documentation for more details. =
1 replica.key = issue.key
2 replica.assignee = issue.assignee
3 replica.reporter = issue.reporter
4 replica.summary = issue.summary
5 replica.description = issue.description
6 replica.type = issue.type
7 replica. labels = issue, labels
8 replica.attachments = issue.attachments
9 replica.comments = issue.comments
10 replica.status = issue.status
11
12 replica.customFields."Customer" = issue.customFields."Customer"
13 replica. customFields."Supported Browsers" = issue.customFields."Supported Browsers"
14
15 //Send a Custom Field value
16 //replica.customFields."CF Name" = issue.customFields."CF Name"
v Incoming sync & o
Incoming sync rules define how recelved data can be Interpreted on the source side. Check the documentation for more detalls.
1 issue.labels = replica.labels
2 issue.summary = replica.summary
3 issue.description = replica.description ?: "Mo description”
4 issue.attachments = attachmentHelper.mergeAttachments(issue, replica)
5 issue.comments += replica.addedComments
]
7 //Receive a Custom Field value
8 //issue.customFields."CF Mame".value = replica.customFields."CF Name".value
9 /*
10 Status Synchronization

12 Sync status according to the mapping [remote issue status: local issue status]
13 If statuses are the same on both sides don"t include them in the mapping

14 def statusMapping = ["Open":"New", "To Do":"Open"]

15 def remoteStatusName = replica.status.name

16 issue.setStatus(statusMapping[remoteStatusName] ?: remoteStatusName)

17 */

More Integrations Documentation EULA Support Reportabug
Powered by Exalate v. 5.6.0 (Core v. 5.6.0)

Editor Features

¢ Light Mode: Use to toggle to switch between Dark and Light mode

e Copy: Copy Incoming/Outgoing code blocks to the clipboard.

e Expand: Expands the code editor window for a better view if needed.

¢ Mini Code Map: Allows you to quickly navigate through the code, useful when dealing with

longer code blocks.

Rules Triggers Statistics Info

Dark Mode
v Incoming sync E o
ncoming sync rules define how recelved data can be Interpreted on the source side. Check the documentation for more detalls.

335 private statlc <I> 5Cala.UpTlon<i> NONEe(Llass<i> ev1Oence) i SCala.UpTlons.MULDULES.<I> empTyl)

34

a5 private static =L, R> scala.Tuple2<L, R> pair(L 1, R r) { scala.Tuple2$.MODULE$.<L, R> apply(l, r)} }

36

7 // SERVICES AND EXALATE API

38 private static play.api.inject.Injector getInjector() {

39 InjectorGetter.getInjector()
48 }
41

2 private static def getGeneralSettings() {
43 def gsp = InjectorGetter.getInjector().instance0f(com.exalate.api.persistence.issuetracker.IGenera
44 //def gsp = InjectorGetter.getInjector().instance0f(com.exalate.api.persistence.issuetracker.IGene}

45 def gsOpt = await(gsp.get())

46 def gs = orNulligsOpt)

47 as

Dark Mode on:

Outgoing sync

Outgoing sync rules define what Information can be sent to the destination instance. Check the documentation for more detalls.

v

replica. key = issue.key
replica.assignee issue.assignee
replica. reporter issue. reporter
replica.summary issue.summary
replica.description issue.description
replica. type issue.type
replica. labels issue. labels
replica.attachments issue.attachments

replica.comments issue.comments
replica.status = issue.status

park Mode €4)

m

Expanded mode on (Dark mode):

" + Add C g (@)

® Ay Exalate
2

Incoming sync

issue.labels = replica. labels
issue.summary = replica.summary

issue.description = replica.description 7: "N tion"
issue.attachments = attachmentHelper.mergeAttachments(issue, replica)
issue. comments += replica.addedComments

store(issue)

httpClient issue.key}",

In the Sync processors, the Monaco editor library allows for auto-complete, syntax highlight and
syntax errors highlight when writing sync rules.

Incoming sync
Incoming sync rules define how recelved data can be Interpreted on the source side. Check the documentation for more detalls.

v

=
-
Ld

issue.labels = replica.labels
issue.summary = replica.summary

nstanceof

llegalStateException replica)
nstantiationError

nstantiationException

llegalThreadStateException

mplement

llegalMonitorStateException

1legalAccessError

llegalAccessException

ncompatibleClassChangeError
ndexOut0fBoundsException
ArrayIndexOutOfBoundsException

How to create a Sync Rule

Sync rules are groovy-based scripts that can be used to implementfiltering, mapping, and
transformation. These are essential operations in any synchronization.

Groovy is a dynamic language for the Java platform. Check out the following links to get more
details about Groovy and how to develop in this language:

e http://www.groovy-lang.org/
e http://www.groovy-lang.org/learn.html

e http://www.groovy-lang.org/documentation.html
Groovy learning courses that we can recommend:
e https://www.pluralsight.com/courses/groovy-getting-started

e https://www.pluralsight.com/courses/groovy-fundamentals

Sync rule types

There are 2 different types of Sync Rules, each with its own purpose.

e Qutgoing sync

e Incoming sync

Note: For more information please see the synchronization process explanation.

Outgoing sync
This rule defines what information is sent to the destination side.

Exalate runs the outgoing sync processor when you start the synchronization or update the local
issue which is under sync.

You can assign issue fields to a replica on the outgoing sync. For more information on this, see
issue fields available for synchronization.

Variable Explanation
Input issue local issue data you need to synchronize
Output replica copy of the issue data which is sent to the destination instance

Simple examples of Outgoing sync rules

1 replica.summary = issue.summary // send summary
2 replica.description = issue.description // send description
3 replica.comments = issue.comments // send comments

4 replica.attachments = issue.attachments // send attachments

Condition example in the Outgoing Sync rules

Don't send anything when priority is trivial

http://www.groovy-lang.org/
http://www.groovy-lang.org/learn.html
http://www.groovy-lang.org/documentation.html
https://www.pluralsight.com/courses/groovy-getting-started
https://www.pluralsight.com/courses/groovy-fundamentals
https://docs.exalate.com/docs/behind-the-scenes-of-a-sychronization
https://docs.exalate.com/docs/jira-fields-and-entities-available-for-synchronization

1 // If the issue priority is "Trivial" don't send any data. In other cases send the summary, description, comments and

attachments

2

3 if (issue.priority.name == "Trivial") {
4 return

5}

6 replica.summary = issue.summary
7 replica.description = issue.description
8 replica.comments = issue.comments

9 replica.attachments = issue.attachments

Incoming sync

When you receive data from the other side you need to apply this data on your instance. You can
define how to handle the received information on your instance with the help of the incoming sync

rules.

Exalate runs the incoming sync every time there's new data received from the remote side.

When you receive the synchronization data from the remote side for the first time, Exalate creates

the issue locally in your instance.

Starting from this moment the issue is considered under synchronization(under sync). From
that moment every issue update triggers the update of the synced issue on the other side.

Variable
Input replica
Output issue

previous

Explanation
Information received from the source instance
Issue object which is used to create/update the local issue

Previous information received from the source instance

Important: When you leave the incoming sync empty, nothing is synchronized. Please see
the Unidirectional synchronization for more details.

Simple Incoming sync example

if(firstSync){

// If it's the first sync for an issue and local copy of the issue does not exist yet
// Set project key from source issue, if not found set a default
issue.projectkey = nodeHelper.getProject(replica.project?.key)?.key ?: "TEST"

issue.typeName = nodeHelper.getlssueType(replica.type?.name, issue.projectkey)?.name 7. 7 ?: "Task"}

issue.summary = replica.summary
issue.description = replica.description

1
2
3
4
5 /] Set type name from source issue, if not found set a default
6
8
9

10 issue.comments = commentHelper.mergeComments(issue, replica)
11 issue.attachments = attachmentHelper.mergeAttachments(issue, replica)

Note: Incoming requests are distinguished based on the information stored in a replica. So if

https://docs.exalate.com/docs/unidirectional-sync-for-jira-cloud

you want to have different sync rules for the first synchronization and then others for synced
issue updates, you should use conditional statements.

1 if (firstSync) {

2 return // don't create any issues, only sync changes to the issue which are already under sy3 nc}
4 issue.summary = replica.summary

5 issue.description = replica.description

6 issue.labels = replica.labels

7 issue.comments = commentHelper.mergeComments(issue, replica)

8 issue.comments = attachmentHelper.mergeAttachments(issue, replica)

More advanced configuration

You can set your own values for the local issue based on the received data from the other side.
For example, if the synced issue status changes to Done on the remote side — set the local issue
status to Resolved.

To configure advanced conditions for your synchronization use script helper methods.

Check the example below:

1 // Create a request in the support project "SD", but if it's a critical issue in the customer's WEB project, assign it to B
ob Price

2

3 issue.project = nodeHelper.getProject("SD")

4

5 if (replica.priority.name = "Critical" && replica.project.key = "WEB") {
6 issue.assignee = nodeHelper.getUser("bprice") // assign to Bob

7 issue.priority = nodeHelper.getPriority("Blocker")

8 } else {

9 issue.priority = nodeHelper.getPriority("Major")

10}

11

12 issue.summary = replica.summary

13issue.projectkey = "SD"issue.typeName = "Request"

Default configuration

By default, Exalate configures some basic scripts in the Sync Rules for your convenience. Below is
the default configuration of the Outgoing and Incoming sync.

It helps to synchronize basic issue data: summary, description, comments, resolution, status,
attachments and project.

Default Outgoing sync

https://www.tutorialspoint.com/groovy/groovy_if_else_statement
https://docs.exalate.com/docs/script-helpers
https://docs.exalate.com/docs/sync-rules

1 replica.key = issue.key

2 replica.type = issue.type

3 replica.assignee = issue.assignee

4 replica.reporter = issue.reporter

5 replica.summary = issue.summary
6 replica.description = issue.description
7 replica.labels = issue.labels

8 replica.comments = ijssue.comments
9 replica.resolution = issue.resolution
10 replica.status = issue.status

11 replica.parentld = issue.parentld

12 replica.priority = issue.priority

13 replica.attachments = issue.attachments
14 replica.project = issue.project

Default Incoming sync

1 if(firstSync){

2 /] If it's the first sync for an issue (local issue does not exist yet)

3 /] Set project key from source issue, if not found set a default

4 issue.projectKey = nodeHelper.getProject(replica.project?.key)?.key ?: "TEST"
5 /] Set type name from source issue, if not found set a default

6

7

issue.typeName = nodeHelper.getissueType(replica.type?.name, issue.projectkey)?.name ?:"T ask"}
issue.summary = replica.summary
8 issue.description = replica.description
9 issue.comments = commentHelper.mergeComments(issue, replica)

10 issue.attachments = attachmentHelper.mergeAttachments(issue, replica)

Product
About Us 7

O NrelcHES i RAGE
BB sync
API Reference
beeopnipg sync
Pricing and Licensing [
Resources
Subscribe for a weekly Exalate hack 2
Academy [
Blog &
YouTube Channel &
Ebooks 2
Still need help?
Join our Community
Visit our Service Desk [
Find a Partner [

http://sandbox-exalate-documentation.knowledgeowl.com/#Outgoingsync0
http://sandbox-exalate-documentation.knowledgeowl.com/#Incomingsync1
https://exalate.com/who-we-are
http://sandbox-exalate-documentation.knowledgeowl.com/docs/release-history
http://sandbox-exalate-documentation.knowledgeowl.com/docs/glossary
http://sandbox-exalate-documentation.knowledgeowl.com/docs/exalate-api-reference-documentation
http://sandbox-exalate-documentation.knowledgeowl.com/docs/security
http://sandbox-exalate-documentation.knowledgeowl.com/docs/pricing-licensing
https://exalate.com/hack/?utm_campaign=ExalateHack&utm_medium=docs&utm_source=docs_home_page
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

