
How to Install Exalate for Jira Cloud on Docker
Last Modified on 01/15/2026 7:57 pm EST

JIRA CLOUD INSTALLATION DOCKER

You can host Exalate for Jira Cloud on your own server. To do so, you need to install Exalate on
Docker.

Note: You need to install Docker. Check the docker documentation for more details.

Steps to Install Exalate for Jira Cloud on Docker

1. Create directory and create docker-compose.yml file

Create a directory to hold the docker-compose file:

cd ~
mkdir exalate-jcloudnode

Create a docker-compose.yml file

Note: We recommend using the latest version of Exalate for Jira Cloud. It can be found in the
Release History.

Enter the latest version in the image tag. For example, in image: idalko/jcloudnode:5.23.0 , the version
of Exalate for Jira Cloud is 5.23.0 .

The docker-compose.yml file should contain the following information in it:

http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:Jira+Cloud
http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:installation
http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:docker
https://docs.docker.com/
https://exalatedocs.knowledgeowl.com/docs/jira-cloud-f9b4463

services:
 database:
 restart: unless-stopped
 image: postgres:15.12
 volumes:
 - ./persist/db:/var/lib/postgresql/data
 - ./createdb.sh:/docker-entrypoint-initdb.d/init-user-db.sh
 environment:
 # adapt the default passwords
 - DB_NAME=jcloudnode
 - DB_USER=exalate
 - DB_PASS=exalate
 - POSTGRES_PASSWORD=exalate
 networks:
 - database

 jcloudnode:
 restart: unless-stopped

 # use the latest version https://hub.docker.com/r/idalko/jcloudnode
 image: idalko/jcloudnode:5.12.0
 depends_on:
 - database #wait for postgres to be started, not for ready
 volumes:
 - ./persist/home:/opt/jcloudnode/data
 environment:
 # Add your environment settings here, check documentation for details
 - JCLOUDNODE_PG_HOST=database
 - JCLOUDNODE_PG_DB=jcloudnode?gssEncMode=disable
 - JCLOUDNODE_PG_PWD=exalate
 - JCLOUDNODE_PG_USER=exalate
 - JCLOUDNODE_PORT=9002

 # When you deploy Exalate onto a server, you configure a DNS rule such that
 #whenever people navigate to foo.com, they reach your server's Exalate.
 #You set up SSL so that https://foo.com leads to your Exalate on your server.
 #Now you need to set environment variable NODE_SELF_URL=https://foo.com
 #for your Exalate docker container.

 # Use following variables to link the node with nginx proxy
 # Replace exa-jcl.exalate.biz with the appropriate FQDN
 - LETSENCRYPT_HOST=exa-jcl.exalate.biz
 - VIRTUAL_HOST=exa-jcl.exalate.biz
 - VIRTUAL_PORT=9002
 - NODE_SELF_URL=https://foo.com
 # CACHE_EXPIRY_DURATION_HOURS variable defines how long the cache will remain in the app.
 # The default value of 8 hours can be changed by specifying the number of hours.
 - CACHE_EXPIRY_DURATION_HOURS=20

 networks:
 - database
 - proxy

networks:
 database:
 driver: bridge
 default:
 driver: bridge
 proxy:
 external:
 name: proxy

Note: the - JCLOUDNODE_PG_DB= and - DB_NAME= must match in order to start the db
correctly.

Connecting to Postgres 10 or Higher

For unencrypted connections from Exalate to a Postgres version 10 or higher, you need to disable
gssEncMode with the following setting:

https://foo.com/
https://foo.com/
https://foo.com/

exalate is the name of the database on the postgres instance
#
JCLOUDNODE_PG_DB=exalate?gssEncMode=disable

2. Ensure that a correct database is setup using a createdb.sh

Create or download a createdb.sh file (referenced from docker-compose.yml):

Note: Click to download the file.

The file must be executable (you can use the command: chmod +x createdb.sh to make the
file executable)and should contain the following information:

#!/bin/bash

TEST=`psql -U postgres <<-EOSQL
 SELECT 1 FROM pg_database WHERE datname='$DB_NAME';
EOSQL`

echo "******CREATING DOCKER DATABASE******"
if [[$TEST == "1"]]; then
 # database exists
 # $? is 0
 exit 0
else
psql -U postgres <<-EOSQL
 CREATE ROLE $DB_USER WITH LOGIN ENCRYPTED PASSWORD '${DB_PASS}' SUPERUSER;
EOSQL

psql -U postgres <<-EOSQL
 CREATE DATABASE $DB_NAME WITH OWNER $DB_USER ENCODING 'UNICODE' LC_COLLATE 'C' LC_CTYPE 'C' TEMPL
ATE template0;
EOSQL

psql -U postgres <<-EOSQL
 GRANT ALL PRIVILEGES ON DATABASE $DB_NAME TO $DB_USER;
EOSQL
fi

echo ""
echo "******DOCKER DATABASE CREATED******"

Ensure that the volumes are included in your backup strategy:

persist

3. Set Environment Variables if necessary

Below, you can find the environment variables used for the app container.

Full list of environment variables:

createdb.sh

https://dyzz9obi78pm5.cloudfront.net/app/image/id/6374dd1939a8ff597d7b6563/n/createdb.sh

CACHE_EXPIRY_DURATION_HOURS CACHE_EXPIRY_DURATION_HOURS=8

Defines
how long
the cache
remains in
the app.
The default
value of 8
hours can
be changed
by
specifying
the number
of hours.

EXALATE_GROUP_CONSOLE_ADMIN EXALATE_GROUP_CONSOLE_ADMIN=some_group_name

 Grants
access to
the admin
console to
users added
to this
group.

JCLOUDNODE_PG_DB JCLOUDNODE_PG_DB=exalate

Tells
Exalate
what is the
Postgres
database
name for
the Exalate
application

JCLOUDNODE_PG_HOST JCLOUDNODE_PG_HOST=database

Tells
Exalate
where is the
Postgres
database to
connect is
hosted

JCLOUDNODE_PG_PWD JCLOUDENODE_PG_PWD=secret

Tells the
Exalate
application
what is the
Postgres
database
user's
password
for the
Exalate
application
to perform
queries with

JCLOUDNODE_PG_USER JCLOUDNODE_PG_USER=exalate

Tells the
Exalate
application
what is the
Postgres
database
user name
for the
Exalate
application
to perform
queries with

HTTP_HEADERS HTTP_HEADERS="TestName1: testAddHeader1"

Allows
additional
information
to pass
between
the clients
and the
server
through the
request
header.

SMTP_FROM SMTP_FROM=my.name@gmail.com

Email that
is used to
send error
notifications

SMTP_HOST_NAME SMTP_HOST_NAME=smtp.gmail.com

Host name
of the SMTP
server used
to send
error
notifications

SMTP_LOGIN SMTP_LOGIN=my.name
Login to the
SMTP
service

SMTP_PASS SMTP_PASS=secret
Password to
the SMTP
service

SMTP_PORT SMTP_PORT=587
Port (also
check the
TLS setting)

SMTP_TLS SMTP_TLS=true

Can be set
to false, but
then the
SMTP_PORT

 should
be set to
the port,
that
accepts
non-SSL
and non-
TLS
connections

FEATURE_AI_ASSIST_ENABLED FEATURE_AI_ASSIST_ENABLED=true

Switches on
AI Assist
feature in
Exalate
admin
console.
When
enabled,
users can
use Exalate
AI to
generate
sync rules.
*The AI
Assist
feature
requires a
real-time
internet
connection.

Using a Proxy for Outgoing Connections

Whenever the Exalate node needs to use a proxy to establish outgoing connections, use the
following parameters in the environment (naming should be obvious):

PROXY_HTTP_HOST
PROXY_HTTP_PORT
PROXY_HTTPS_HOST
PROXY_HTTPS_PORT

4. Start the Application

cd ~/exalate-jcloudnode
docker-compose up -d

5. Register the Node

To be able to fully use the functionality of your new node, it needs to be registered on the mapper.
 This mapper acts as a DNS server, mapping tracker URLs to node URLs.

Please raise a ticket on the support portal providing the following:

Jira Cloud instance URL
URL of the Exalate node which has been deployed on-premise

How to Manage the Application on Docker

Run Queries to the Application's Database

https://support.idalko.com/plugins/servlet/desk/portal/8/create/33

cd ~/exalate-jcloudnode
docker exec -it exalatejcloudnode_database_1 bash
su postgres
psql -A $DB_NAME

You can find all tables using PSQLs \dt+ command:

\dt+

All the Postgres SQL queries are permitted

To exit the application's DB:

\q
\q exits the psql
exit
exits the postgres user session
exit
exits the exalatejcloudnode_database_1 bash session

Inspect the Application's Filesystem

cd ~/exalate-jcloudnode
docker exec -it exalatejcloudnode_jcloudnode_1 bash

Remove the Application

cd ~/exalate-jcloudnode
docker-compose rm

Remove the Application Data

Warning: Do this only if you wish to delete all the synchronization information, including the
current synchronizations enqueued to be performed, and synchronization status. Ensure that
the remote side you Exalate issues with knows that you're stopping synchronization and are
ready to handle synchronization errors.

cd ~/exalate-jcloudnode
docker volume ls | grep exalatejcloudnode_vol | awk '{ print $2 }' | xargs docker volume rm
docker volume rm exalatejcloudnode_voldatabase
docker volume rm exalatejcloudnode_voljcloudnode

System Administration Tasks

With the Exalate for Jira Cloud is running on your environment, you are also required to do the
mandatory system administration tasks

Backup (& restore tests)
Disaster recovery procedure
Upgrades whenever needed

Note: Please note that an Exalate version has a lifespan of 2 years. This is to ensure backward
compatibility over the whole platform. There are regular new versions deployed which contain
bug fixes, security-related improvements, and even new features. Watch the release notes
page for any new versions.

https://docs.exalate.com/docs/azure-devops-2e236be

Upgrading Exalate on Docker

If you need to upgrade Exalate on Docker, here are the steps to follow:

1. Edit the YAML File :

Open the docker-compose.yml file in a text editor and modify the image tag for the service you
wish to upgrade.

replace the "latest" with the latest version available at https://hub.docker.com/r/idalko/jcloudnode
image: idalko/jcloudnode:latest
depends_on:
- database #wait for postgres to be started, not for ready

Replace latest with the latest or desired version tag.

2. Pull the Latest Image :

From the directory containing your docker-compose.yml file, pull the latest image.

docker-compose pull

3. Recreate the Container:

Using Docker Compose, you can easily recreate the container with the new image.

docker-compose up -d

The -d flag runs the containers in detached mode. Docker Compose automatically stops the
old container and starts a new one based on the updated image.

4. Post-Upgrade Checks:

After starting the upgraded container, check to make sure everything is running as expected:

Log into the Exalate interface and verify that all your configurations, connections are
intact.
Test out a few synchronizations to make sure they work as expected.
Check for any errors in the Docker logs or the Exalate logs.

Troubleshooting

Issues during the installation of the Exalate for Jira Cloud

If you have issues during the installation of the Exalate app for Jira Cloud, you can find logs
describing possible problems inside /tmp .

The name for the file is generated randomly and automatically by the OS, but you can find the file
by the creation date.

Issues while running the Exalate server for Jira Cloud

Logs are generated under the directory: /opt/jcloudnode/data/logs (in the docker container)

Refer to these logs to get more information about possible problems, and contact our support

team if you need any assistance.

Support

Check our Support options.

ON THIS PAGE

Steps to Install Exalate for Jira Cloud on Docker

How to Manage the Application on Docker

System Administration Tasks

Upgrading Exalate on Docker

Troubleshooting

Product

About Us 

Release History 

Glossary 

API Reference 

Security 

Pricing and Licensing 

Resources

Subscribe for a weekly Exalate hack 

Academy 

Blog 

YouTube Channel 

Ebooks 

Still need help?

Join our Community 

Visit our Service Desk 

Find a Partner 

https://exalatedocs.knowledgeowl.com/docs/support
http://sandbox-exalate-documentation.knowledgeowl.com/#StepstoInstallExalateforJiraCloudonDocker0
http://sandbox-exalate-documentation.knowledgeowl.com/#HowtoManagetheApplicationonDocker1
http://sandbox-exalate-documentation.knowledgeowl.com/#SystemAdministrationTasks2
http://sandbox-exalate-documentation.knowledgeowl.com/#UpgradingExalateonDocker3
http://sandbox-exalate-documentation.knowledgeowl.com/#Troubleshooting4
https://exalate.com/who-we-are
http://sandbox-exalate-documentation.knowledgeowl.com/docs/release-history
http://sandbox-exalate-documentation.knowledgeowl.com/docs/glossary
http://sandbox-exalate-documentation.knowledgeowl.com/docs/exalate-api-reference-documentation
http://sandbox-exalate-documentation.knowledgeowl.com/docs/security
http://sandbox-exalate-documentation.knowledgeowl.com/docs/pricing-licensing
https://exalate.com/hack/?utm_campaign=ExalateHack&utm_medium=docs&utm_source=docs_home_page
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

