Xurrent Personal Access Required Token
Permissions or Scopes

Last Modified on 01/15/2026 7:32 pm EST

This document details all APl permissions required by the Exalate Xurrent connector, organized by
feature and use case.

Overview

Xurrent uses a record type + operation permission model for APl access. When creating a
Personal Access Token or OAuth application, you must explicitly grant permissions for each record
type your integration needs to access.

Key Points:

Personal Access Tokens deny all access by default
e You must add scopes for each record type needed
e Operations include: Read , Create , Update , Delete , All

e Some operations require specific user roles in addition to APl scopes

Permission Format

Xurrent permissions follow the format:
<record_type>

Available Operations:

Operation Description

Read Query and retrieve data

Create Create new records

Update Modify existing records

Delete Delete records

Al All operations (Read + Create + Update + Delete)
Examples:

e Request:Read - Can read requests
® Request:Create - Can create requests
e Pperson:Read - Can read people/users

® Team:Read - Can read teams

Minimum Required Permissions

These are the absolute minimum permissions required for basic Exalate sync functionality:

Record Type Operations Purpose

Core sync
Request Read, Create, Update
functionality

With only these permissions, you can:

e Create new requests from incoming sync
e Update existing requests

e Read request details for outgoing sync

Limitations with minimum permissions:

Cannot sync comments (need Note permissions)

Cannot look up users by email (need Person permissions)

Cannot look up teams (need Team permissions)

Cannot use request templates (need Request Template permissions for custom fields type)

Cannot use custom fields with labels (need Ul Extension permissions)

Full Feature Permissions

For full Exalate functionality, grant these permissions:

Record Type Operations Purpose

Request Read, Create, Update Core request sync

Note Read, Create Comment sync

Person Read User lookup (reporter, assignee)
Team Read Team assignment (for member field)
Request Template Read Template-based requests

Ul Extension Read Custom field labels/values

Service Instance Read Service assignment

Permission by Feature

1. Request Sync (Required)

Permissions Needed:
Request: Read, Create, Update
Script Usage:

// These work with Request permissions only
entity = replica

entity.category = "incident"

entity = replica.status

2. Comment/Note Sync

Permissions Needed:
Note: Read, Create
Script Usage:

// Sync comments

entity = commentHelper.mergeComments(entity, replica)

Without Note:Read permission (Outgoing Sync):

e Comments will NOT be read from Xurrent

No error thrown

Warning logged: "Unauthorized (401) when fetching comments... APl token may lack Note:Read permission"

Sync continues without comments (graceful degradation)

Without Note:Create permission (Incoming Sync):

e Sync FAILS with clear error message

e Error: "Unauthorized (401) when creating comment... Ensure your API token has Note:Create permission”

e This ensures users know exactly what permission is missing

3. User/People Lookup

Permissions Needed:
Read

Script Usage:

// Look up user by email
def user .getUserByEmail()

entity.requestedFor = user

up user ID
def user .getUserByld()

Without Person permissions:

® getUserByEmail() throws IssueTrackerException with 401 error

e Reporter/Assignee enrichment fails

4, Team Assignment

Permissions Needed:
Read
Script Usage:

// Look up team by name
def = nodeHelper.getTeamldByName()
entity.teamld = teamld

Without Team permissions:

® getTeamldByName() throws IssueTrackerException with 401 error
e Team member validation is skipped (graceful degradation)

e Request creation may still work if team ID is known

5. Request Templates

Permissions Needed:
Request Template: Read
Script Usage:

// Look up template by name
def = nodeHelper.getTemplateldByName()
entity.templateld = templateld

Without Request Template permissions:

® getTemplateldByName() throws IssueTrackerException with 401 error
e Cannot dynamically look up templates

e Can still use template ID directly if known

6. Custom Fields (Ul Extensions)

Permissions Needed:

Request Template: Read
Ul Extension: Read

Script Usage:

/I Get custom field with validation
def ¢f = nodeHelper.getCustomField(templateld,))
entity.customFields[1=cf

// Get field label
def = nodeHelper.getCustomFieldLabel(templateld,)

// Get value label (for dropdowns)
def = nodeHelper.getCustomFieldValuelLabel(templateld,

// Get all field definitions
def = nodeHelper.getCustomFieldDefinitions(templateld)

Without Ul Extension permissions:

e getCustomField() throws error about missing definitions
® getCustomFieldLabel() returns internal ID instead of label
® getCustomFieldvalueLabel() returns internal value instead of label

e Custom fields still sync, but with internal IDs instead of labels

7.Service Assignment

Permissions Needed:
Service Instance: Read
Script Usage:

// Look up service by name
def = nodeHelper.getServiceldByName()
entity.serviceld = serviceld

Without Service Instance permissions:

® getServiceldByName() throws IssueTrackerException with 401 error

e Can still use service ID directly if known

8. Tags/Labels

Permissions Needed:
Request: Read, Update

Tags are managed through the Request API, no separate Tag permission needed.

Script Usage:

/I Sync /tags
entity. = replica.
9. Attachments

Permissions Needed:

Request: Read, Update
Note: Create (for attachments on comments)

Attachments use the storage facility APl which is accessible with Request permissions.
Script Usage:

// Sync attachments
entity = replica.attachments

Permission Errors

401 Unauthorized Errors

When a method lacks required permissions, you'll see errors like:

IssueTrackerException: Unauthorized: If you want to use this feature (getUserByEmail),
ensure your APl token has proper permissions for the People endpoint.

Solution: Add the required record type with Read permission to your Personal Access Token.

Graceful Degradation

Some features gracefully degrade instead of throwing errors:

Feature Behavior without Permission

Comments skipped - sync proceeds without

Note:Read (outgoing)
comments

Feature Behavior without Permission
Team member validation Skipped - request proceeds
Custom field labels Returns internal ID

Custom field value labels Returns internal value

Strict Validation (Throws Exception)

These features throw exceptions with clear 401 messages:

Feature Error Message

Note:Create "Unauthorized (401) when creating comment... Ensure your API token has

(incoming) Note:Create permission"

"Unauthorized (401) when fetching person. Check APl permissions for people
Person:Read

endpoint.”
Team:Read "Unauthorized: If you want to use this feature (getTeamldByName), ensure your
(lookup) API token has proper permissions for the Teams endpoint."

Additional Resources

e Xurrent REST APl Documentation
e Personal Access Tokens

e OAuth Scopes

Next steps

Product . .
° A%g;ttﬂgmyour first sync connection
* Reenfiguteyequest synchronization
Glossary 2
Havémfeaqeestions? Ask the community
Security [7I
Pricing and Licensing [
Resources
Subscribe for a weekly Exalate hack [
Academy 2]
Blog [l
YouTube Channel £
Ebooks
Still need help?
Join our Community I
Visit our Service Desk £
Find a Partner [

https://developer.xurrent.com/v1/
https://learning.xurrent.com/integrations_personal_access_token/
https://www.xurrent.com/blog/more-action-options-available-to-scope-oauth-tokens/
https://docs.exalate.com/docs/set-up-a-connection-in-basic-mode-for-xurrent
https://docs.exalate.com/docs/how-to-sync-requests-in-xurrent
https://community.exalate.com/
https://exalate.com/who-we-are
http://sandbox-exalate-documentation.knowledgeowl.com/docs/release-history
http://sandbox-exalate-documentation.knowledgeowl.com/docs/glossary
http://sandbox-exalate-documentation.knowledgeowl.com/docs/exalate-api-reference-documentation
http://sandbox-exalate-documentation.knowledgeowl.com/docs/security
http://sandbox-exalate-documentation.knowledgeowl.com/docs/pricing-licensing
https://exalate.com/hack/?utm_campaign=ExalateHack&utm_medium=docs&utm_source=docs_home_page
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

