
Scripts in Visual Mode
Last Modified on 01/28/2026 11:41 am EST

JIRA CLOUD AZURE DEVOPS JIRA ON-PREMISE ZENDESK VISUAL MODE

Script rules can be used in Visual Mode when the standard mapping rules are not sufficient to
cover the use case.
Creating a script rule is straightforward.

Edit your visual connection
Select the rules
Select the 'Add script'

How does it work?

The scripts are groovy-based, meaning that all groovy structures can be used to define the
behavior of the mapping. For instance, if a mapping is needed between the assignees of one side
with the instance name 'left' and another side with the instance name 'right', the following code
snippet implements the mapping:

// define the mapping

def leftToRightAssignee = [
 // left Assignee ---> right Assignee
 "peter@acme.com" : "peter.pan@acme.com",
 "cinderella@acme.com" : "cinderalla.white@acme.com",
]

// look up the corresponding email, default to team@acme.com
def targetUserEmail = leftToRightAssignee[left.issue.assignee?.email] ?: "team@acme.com"

// assign to right issue

right.issue.assignee = nodeHelper.getUserByEmail(targetUserEmail)

Examples

Labels

your_instance_shortname.issue.labels = remote_instance_shortname.issue.labels

Components

http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:Jira+Cloud
http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:Azure+DevOps
http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:Jira+on-premise
http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:Zendesk
http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:Visual+Mode

your_instance_shortname.issue.components = remote_instance_shortname.issue.components.collect { component ->
def remoteComponentLeadEmail = component.lead?.email
def localComponentLeadName = nodeHelper.getUserByEmail(remoteComponentLeadEmail)
nodeHelper.createComponent(
 issue,
 component.name,
 component.description, // can also be null
 localComponentLeadName?.key, // can also be null
 component.assigneeType?.name() // can also be null
)
}

Resolution

Set the local resolution same as on the remote side, if there's no such resolution on your side don't
set anything

if(nodeHelper.getResolution(remote_instance_shortname.issue.resolution?.name)) {
 your_instance_shortname.issue.resolution = remote_instance_shortname.issue.resolution
}

Versions

// assign fix versions from JIRA A to JIRA B
your_instance_shortname.issue.fixVersions = remote_instance_shortname.
 .fixVersions
 // ensure that all the fixVersions are available on B
 .collect { v -> nodeHelper.createVersion(issue, v.name, v.description) }
// assign affected versions from JIRA A to JIRA B
your_instance_shortname.issue.affectedVersions = remote_instance_shortname
 .affectedVersions
 .collect { v -> nodeHelper.createVersion(issue, v.name, v.description) }

User fields

Assignee

your_instance_shortname.issue.assignee = nodeHelper.getUser(remote_instance_shortname.issue.assignee?.key)

Reporter

your_instance_shortname.issue.reporter = nodeHelper.getUser(remote_instance_shortname.issue.reporter?.key)

Custom fields

Text/String custom fields

Sync value from "remote side select list custom field" to the local "select list custom field"

your_instance_shortname.issue.customFields."text custom field".value = remote_instance_shortname.issue.customFie
lds."remote side text custom field".value

Set a fixed value in the local custom field

Single select list/radio button

Sync value from "remote side select list custom field" to the local "select list custom field"

your_instance_shortname.issue.customFields."select list custom field".value = remote_instance_shortname.issue.cust
omFields."remote side select list custom field".value

Set a fixed value in the local custom fields "My select list"

your_instance_shortname.issue.customFields."My Select list".value = "Red"

Multi-select list/Checkbox

// sync value from "remote multi-select list custom field" to the local "select list multiple choice"
your_instance_shortname.issue.customFields."select list multiple choice".value = remote_instance_shortname.issue.c
ustomFields."remote multi-select list custom field".value?.value
// Add "Red" as a value in the custom fields "My multi-select list"
your_instance_shortname.issue.customFields."My multi-select list".value += nodeHelper.getOption("Red")

Multi-cascade custom fields

Sync only existing option values

def sourceRegion = remote_instance_shortname.issue.customFields."Source Region/Country"?.value?.parent?.value
def sourceCountry = remote_instance_shortname.issue.customFields."Source Region/Country"?.value?.child?.value

def region = nodeHelper.getOption(
 issue,
 "Destination Region/Country",
 sourceRegion
)
def country = region.childOptions.find{it.value == sourceCountry}
if (region != null && (sourceCountry == null || country != null)) {
 your_instance_shortname.issue.customFields."Destination Region/Country"?.value = nodeHelper.getCascadingSelect
(
 region,
 country
)
} else if (sourceRegion == null) {
 your_instance_shortname.issue.customFields."Destination Region/Country"?.value = null
}

Date/DateTime custom fields

// if you have a custom field called "My Date" (of type Date Picker or Date Time Picker)
// on your Side and you'd like to populate it from
// "Their Date" of remote Side (of type Date Picker or Date Time Picker)
your_instance_shortname.issue.customFields."My Date".value = remote_instance_shortname.issue.customFields."The
ir Date".value
// or if you'd like to assign a fixed moment in time:
your_instance_shortname.issue.customFields."My Date".value = new java.text.SimpleDateFormat("yyyy-MM-dd HH:m
m:ss z")
 .parse("2019-10-24 13:30:59 EET")

URL custom fields

// sync value from "remote side url custom field" to the local "url custom field"
your_instance_shortname.issue.customFields."url custom field".value = remote_instance_shortname.issue.customFiel
ds."remote side url custom field".value

// Set a fixed value "https://exalate.com" in the custom field with name "My url custom field"
your_instance_shortname.issue.customFields."My url custom field".value = "https://exalate.com"

Label custom fields

// sync value from "remote side labels" to the local "My labels"
your_instance_shortname.issue.customFields."My labels".value = remote_instance_shortname.issue.customFields."re
mote side labels".value
// add "attention" to the custom field "My labels"
your_instance_shortname.issue.customFields."My labels".value += nodeHelper.getLabel("attention")

User picker custom fields

// sync value from "remote side user picker custom field" to the local "user picker custom field"
your_instance_shortname.issue.customFields."user picker custom field".value = nodeHelper.getUser(remote_instance
_shortname.issue.customFields."remote side user picker custom field".value)
// Set a fixed value "557358:bda57a72g56a9-4219-9c29-7d666481388f" (id for a user in your system) in the custom fi
eld with name "My user picker"
your_instance_shortname.issue.customFields."My user picker".value = "557358:bda57a72g56a9-4219-9c29-7d66648
1388f"

Number custom fields

your_instance_shortname.issue.customFields."numeric custom field".value = remote_instance_shortname.issue.custo
mFields."remote side numeric custom field".value

Advanced Scripts

Set a custom field with the issue key of the remote twin in the Visual mode

How to set a custom field like 'Remote Key' with the key of the twin issue. This example shows
how to implement it on a Jira Cloud to Jira Cloud, but the approach can also be used on other
permutations.

Assume you have set up a connection using the visual configuration mode between 'local' and
'remote'.

You have the requirement that a text field 'Remote Key' on the local issue must contain the issue
key of the remote twin.

https://exalate.com/
https://exalate.com/

Approach

What needs to happen is that

once the remote issue is created, a message is sent back from the remote to the local,
containing the issue key of the remote.
this incoming message on the local can then be used to populate the local custom field.

Triggering a message back can be done using the syncBackAfterProcessing function.

Implementation

Add the following script rule to the connection.

Line 1 - limit the sync back to the first sync transaction.

Warning: This must be done, otherwise it creates a loop that sends messages back and
forth continuously.

Line 2 - trigger the sync back transaction using the syncHelper.syncBackAfterProcessing.
Line 5 - assign the value of the remote key to the local customfield 'Remote Key'.

ON THIS PAGE

How does it work?

Examples

Product

About Us �

Release History �

Glossary �

API Reference �

Security �

Pricing and Licensing �

Resources

Subscribe for a weekly Exalate hack �

Academy �

Blog �

YouTube Channel �

Ebooks �

Still need help?

Join our Community �

Visit our Service Desk �

Find a Partner �

https://exalatedocs.knowledgeowl.com/docs/syncbackafterprocessing-42631852
http://sandbox-exalate-documentation.knowledgeowl.com/#Howdoesitwork0
http://sandbox-exalate-documentation.knowledgeowl.com/#Examples1
https://exalate.com/who-we-are
http://sandbox-exalate-documentation.knowledgeowl.com/docs/release-history
http://sandbox-exalate-documentation.knowledgeowl.com/docs/glossary
http://sandbox-exalate-documentation.knowledgeowl.com/docs/exalate-api-reference-documentation
http://sandbox-exalate-documentation.knowledgeowl.com/docs/security
http://sandbox-exalate-documentation.knowledgeowl.com/docs/pricing-licensing
https://exalate.com/hack/?utm_campaign=ExalateHack&utm_medium=docs&utm_source=docs_home_page
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

