Scripts in Visual Mode

Last Modified on 01/28/2026 11:41 am EST

Script rules can be used in Visual Mode when the standard mapping rules are not sufficient to
cover the use case.
Creating a script rule is straightforward.

e Edit your visual connection
e Select the rules

e Select the 'Add script'

How does it work?

The scripts are groovy-based, meaning that all groovy structures can be used to define the
behavior of the mapping. For instance, if a mapping is needed between the assignees of one side
with the instance name 'left' and another side with the instance name 'right', the following code
snippet implements the mapping:

// define the mapping
def leftToRightAssignee = [
// left Assignee ---> right Assignhee

"peter@acme.com" : "peter.pan@acme.com”,
"cinderella@acme.com" : "cinderalla.white@acme.com",

// look up the corresponding email, default to team@acme.com
def targetUserEmail = leftToRightAssignee[left.issue.assignee?.email] ?: "team@acme.com"

// assign to right issue

right.issue.assignee = nodeHelper.getUserByEmail(targetUserEmail)

Examples

Labels

your_instance_shortname.issue.labels = remote_instance_shortname.issue.labels

Components

http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:Jira+Cloud
http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:Azure+DevOps
http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:Jira+on-premise
http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:Zendesk
http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:Visual+Mode

your_instance_shortname.issue.components = remote_instance_shortname.issue.components.collect { component ->
def remoteComponentLeadEmail = component.lead?.email
def localComponentLeadName = nodeHelper.getUserByEmail(remoteComponentLeadEmail)
nodeHelper.createComponent(

issue,

component.name,

component.description, // can also be null

localComponentLeadName?.key, // can also be null

component.assigneeType?.name() // can also be null

)

Resolution

Set the local resolution same as on the remote side, if there's no such resolution on your side don't
set anything

if(nodeHelper.getResolution(remote_instance_shortname.issue.resolution?.name)) {
your_instance_shortname.issue.resolution = remote_instance_shortname.issue.resolution

Versions

// assign fix versions from JIRA A to JIRA B
your_instance_shortname.issue.fixVersions = remote_instance_shortname.
fixVersions
// ensure that all the fixVersions are available on B
.collect { v -> nodeHelper.createVersion(issue, v.name, v.description) }
// assign affected versions from JIRA A to JIRA B
your_instance_shortname.issue.affectedVersions = remote_instance_shortname
.affectedVersions
.collect { v -> nodeHelper.createVersion(issue, v.name, v.description) }

User fields

Assignee

your_instance_shortname.issue.assignee = nodeHelper.getUser(remote_instance_shortname.issue.assignee?.key)

Reporter

your_instance_shortname.issue.reporter = nodeHelper.getUser(remote_instance_shortname.issue.reporter?.key)

Custom fields

Text/String custom fields

Sync value from "remote side select list custom field" to the local "select list custom field"

your_instance_shortname.issue.customFields."text custom field".value = remote_instance_shortname.issue.customFie
Ids."remote side text custom field".value

Set a fixed value in the local custom field

Single select list/radio button

Sync value from "remote side select list custom field" to the local "select list custom field"

your_instance_shortname.issue.customFields."select list custom field".value = remote_instance_shortname.issue.cust
omFields."remote side select list custom field".value

Set a fixed value in the local custom fields "My select list"

your_instance_shortname.issue.customFields."My Select list".value = "Red"

Multi-select list/Checkbox

// sync value from "remote multi-select list custom field" to the local "select list multiple choice"
your_instance_shortname.issue.customFields."select list multiple choice".value = remote_instance_shortname.issue.c
ustomFields."remote multi-select list custom field".value?.value

// Add "Red" as a value in the custom fields "My multi-select list"

your_instance_shortname.issue.customFields."My multi-select list".value += nodeHelper.getOption("Red")

Multi-cascade custom fields

Sync only existing option values

def sourceRegion = remote_instance_shortname.issue.customFields."Source Region/Country"?.value?.parent?.value
def sourceCountry = remote_instance_shortname.issue.customFields."Source Region/Country"?.value?.child?.value

def region = nodeHelper.getOption(
issue,
"Destination Region/Country",
sourceRegion
)
def country = region.childOptions.find{it.value == sourceCountry}
if (region != null && (sourceCountry == null || country != null)) {
your_instance_shortname.issue.customFields."Destination Region/Country"?.value = nodeHelper.getCascadingSelect

(

region,
country
)
} else if (sourceRegion == null) {
your_instance_shortname.issue.customFields."Destination Region/Country"?.value = null

}

Date/DateTime custom fields

// if you have a custom field called "My Date" (of type Date Picker or Date Time Picker)
// on your Side and you'd like to populate it from
// "Their Date" of remote Side (of type Date Picker or Date Time Picker)
your_instance_shortname.issue.customFields."My Date".value = remote_instance_shortname.issue.customFields."The
ir Date".value
// or if you'd like to assign a fixed moment in time:
your_instance_shortname.issue.customFields."My Date".value = new java.text.SimpleDateFormat("yyyy-MM-dd HH:m
m:ss z")

.parse("2019-10-24 13:30:59 EET")

URL custom fields

// sync value from "remote side url custom field" to the local "url custom field"
your_instance_shortname.issue.customFields."url custom field".value = remote_instance_shortname.issue.customFiel
ds."remote side url custom field".value

// Set a fixed value "https://exalate.com" in the custom field with name "My url custom field"
your_instance_shortname.issue.customFields."My url custom field".value = "https://exalate.com"

Label custom fields

// sync value from "remote side labels" to the local "My labels"

your_instance_shortname.issue.customFields."My labels".value = remote_instance_shortname.issue.customFields."re
mote side labels".value

// add "attention" to the custom field "My labels"

your_instance_shortname.issue.customFields."My labels".value += nodeHelper.getLabel("attention")

User picker custom fields

// sync value from "remote side user picker custom field" to the local "user picker custom field"
your_instance_shortname.issue.customFields."user picker custom field".value = nodeHelper.getUser(remote_instance
_shortname.issue.customFields."remote side user picker custom field".value)

// Set a fixed value "557358:bda57a72956a9-4219-9c29-7d666481388f" (id for a user in your system) in the custom fi
eld with name "My user picker"

your_instance_shortname.issue.customFields."My user picker".value = "557358:bda57a72956a9-4219-9c29-7d66648
1388f"

Number custom fields

your_instance_shortname.issue.customFields."numeric custom field".value = remote_instance_shortname.issue.custo
mFields."remote side numeric custom field".value

Advanced Scripts

Set a custom field with the issue key of the remote twin in the Visual mode

How to set a custom field like 'Remote Key' with the key of the twin issue. This example shows
how to implement it on a Jira Cloud to Jira Cloud, but the approach can also be used on other
permutations.

Assume you have set up a connection using the visual configuration mode between 'local' and
‘remote’.

- local_to_remote
@ Active < Back to Connections

Scope Rules

&

Configure the synchronization behavior with the help of field mappings and script rules.

Order DD

You have the requirement that a text field 'Remote Key' on the local issue must contain the issue
key of the remote twin.

https://exalate.com/
https://exalate.com/

Approach
What needs to happen is that
e once the remote issue is created, a message is sent back from the remote to the local,

containing the issue key of the remote.

¢ this incoming message on the local can then be used to populate the local custom field.

Triggering a message back can be done using the syncBackAfterProcessing function.

Implementation

Add the following script rule to the connection.

Add script

Use scripting to add an advanced rule. Check examples.

1+ if (firstSync) {
syncHelper.syncBackAfterProcessing()

local.issue.customFields. "Remote Key".value = remote.issue.key

N U A WN

cancel m

e Line 1 - limit the sync back to the first sync transaction.

Warning: This must be done, otherwise it creates a loop that sends messages back and

forth continuously.

e Line 2 - trigger the sync back transaction using the syncHelper.syncBackAfterProcessing.
Proaucl_ine 5 - assign the value of the remote key to the local customfield 'Remote Key"'.

About Us

ONIRfS PN GE

Glossary

Kevegraeicwerk?

BSGHRbYEE

Pricing and Licensing 2

Resources

Subscribe for a weekly Exalate hack [
Academy [

Blog 2

YouTube Channel [
Ebooks 2

Still need help?

Join our Community [
Visit our Service Desk [
Find a Partner 2

https://exalatedocs.knowledgeowl.com/docs/syncbackafterprocessing-42631852
http://sandbox-exalate-documentation.knowledgeowl.com/#Howdoesitwork0
http://sandbox-exalate-documentation.knowledgeowl.com/#Examples1
https://exalate.com/who-we-are
http://sandbox-exalate-documentation.knowledgeowl.com/docs/release-history
http://sandbox-exalate-documentation.knowledgeowl.com/docs/glossary
http://sandbox-exalate-documentation.knowledgeowl.com/docs/exalate-api-reference-documentation
http://sandbox-exalate-documentation.knowledgeowl.com/docs/security
http://sandbox-exalate-documentation.knowledgeowl.com/docs/pricing-licensing
https://exalate.com/hack/?utm_campaign=ExalateHack&utm_medium=docs&utm_source=docs_home_page
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

