How to Secure a Connection between Exalate and
a PostgreSQL Database in Docker?

Last Modified on 01/28/2026 7:54 am EST

Introduction

Assume you are bringing up an Exalate on docker, and you have the need to secure the
connection between the application and the database using SSL.

With the standard configuration you will encounter the following error:

Caused by: org.postgresql.util.PSQLException: FATAL: SSL connection is required. Please specify SSL options and retry.

Al [+

Or alternatively, you want to be sure that PostgreSQL is accessed over SSL.

Note: For more information we suggest checking out the following links:

Configuration of the database server
https://www.postgresql.org/docs/9.1/ssl-tcp.html

Configuration of Docker:
https://github.com/readthedocs/readthedocs.org/pull/5556

Setting the permissions:

https://stackoverflow.com/questions/55072221/deploying-postgresql-docker-with-ssl-
certificate-and-key-with-volumes

Setting up PostgreSQL using SSL

Configure the docker-compose to bring up PostgreSQL

Adapt the docker-compose.yml such that PostgreSQL comes up in an SSL mode:

https://www.postgresql.org/docs/9.1/ssl-tcp.html
https://github.com/readthedocs/readthedocs.org/pull/5556
https://stackoverflow.com/questions/55072221/deploying-postgresql-docker-with-ssl-certificate-and-key-with-volumes

version: '2'

services:
database:
restart: unless-stopped
volumes:
- ./persist/db:/var/lib/postgresql/data
- ./createdb.sh:/docker-entrypoint-initdb.d/init-user-db.sh
#
provide the certificate and the key to the postgres server
#

- ./ca/server.crt:/var/lib/postgresql/server.crt
- ./ca/server.key:/var/lib/postgresql/server.key
image: postgres:alpine

#
ensure postgres is coming up with ssl mode on
#
command: -c ssl=on -c ssl_cert_file=/var/lib/postgresql/server.crt -c ssl_key file=/var/lib/postgresql/server.key
environment:
POSTGRES_DB: mydb
POSTGRES_USER: user
POSTGRES_PASSWORD: secret
environment:
- POSTGRES_PASSWORD=password
- DB_NAME=snownode
- DB_USER=idalko
- DB_PASS=idalko
networks:
- database

networks:
database:
driver: bridge
default:
driver: bridge

Create the certificates

You can create self-signed certificates as follows

Store the certificates in a specific folder on your host
mkdir ca
cd ca

use openssl to generate the certificates

openssl req -new -text -out server.req

openssl rsa -in privkey.pem -out server.key

rm privkey.pem

openssl req -x509 -in server.req -text -key server.key -out server.crt

change ownership and permissions. It depend on the underlying operating system. Userid 70 is postgres on the po
stgres:alpine image

sudo chown 70:70 server.key
sudo chmod 600 server.key

cd ..
docker-compose up -d database

Validate

We like to validate if it works before moving on

assuming that the database 'snownode' has been setup. if there is another database - use that
docker exec -it <name of the container running the database> /bin/bash
psql -U idalko -h localhost snownode

It must confirm that the SSL is enabled

bash-5.0# psql -U idalko -h localhost snownode
psql (12.3)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES 256 _GCM_SHA384, bits: 256, compression: off)

An additional check is to do a PLSQL command

bash-5.0# psql -U idalko -h localhost snownode

psql (12.3)

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)
Type "help" for help.

snownode=# show ssl

snownode-# ;
ssl

Configure the app to access the database using SSL

The only configuration to be added to the docker-compose is by specifying that the PGSSLMODE is
required

The adapted docker-compose looks like

version: '2'

services:
database:

<snip>

snownode:
restart: unless-stopped
ports:
- 9000:9000
image: idalko/snownode:5.0.19
depends_on:
- database #wait for postgres to be started, not for ready
volumes:
- ./persist/home:/opt/snownode/data
environment:

#ensure that the connection to the database is using SSL

- PGSSLMODE="require"
- SNOWNODE_PORT=9000
- SNOWNODE_PG_HOST=database
- SNOWNODE_PG_DB=snownode
- SNOWNODE_PG_USER=idalko
- SNOWNODE_PG_PWD=idalko

networks:
- database
- default

networks:
database:
driver: bridge
default:
driver: bridge

oN"#HTs pacE

About Us [
Rleadeletistory [

gé%%lsr?éyu% PostgreSQL using SSL
API Reference

S«ufigyre the app to access the database using SSL
Pricing and Licensing

Resources

Subscribe for a weekly Exalate hack
Academy [

Blog &

YouTube Channel [

Ebooks [

Still need help?

Join our Community 2

Visit our Service Desk [

Find a Partner [

http://sandbox-exalate-documentation.knowledgeowl.com/#Introduction0
http://sandbox-exalate-documentation.knowledgeowl.com/#SettingupPostgreSQLusingSSL1
http://sandbox-exalate-documentation.knowledgeowl.com/#ConfiguretheapptoaccessthedatabaseusingSSL2
https://exalate.com/who-we-are
http://sandbox-exalate-documentation.knowledgeowl.com/docs/release-history
http://sandbox-exalate-documentation.knowledgeowl.com/docs/glossary
http://sandbox-exalate-documentation.knowledgeowl.com/docs/exalate-api-reference-documentation
http://sandbox-exalate-documentation.knowledgeowl.com/docs/security
http://sandbox-exalate-documentation.knowledgeowl.com/docs/pricing-licensing
https://exalate.com/hack/?utm_campaign=ExalateHack&utm_medium=docs&utm_source=docs_home_page
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

