Adding basic external script

Last Modified on 01/28/2026 11:32 am EST

This article shows an example of how you can create an example groovy file, add a script, and
call it in the Sync Rules.

1. Make sure you have the scripts directory. The directory location depends on the issue
tracking platform.Custom scripts can only be deployed on Jira Server/Datacenter and nodes

which are deployed through the docker deployment approach.

Platform location

Jira Server <jira-home>/scripts

Jira
<jira-shared-home>/scripts
Datacenter
/opt/<nodename>/data/scripts
There could be one of the following values instead of <nodename> :
Docker o snownode for Exalate for ServiceNow.
based

o adnode for Exalate for Azure DevOps.

o hpgcnode for Exalate for HP ALM/QC.

Jira Cloud, just as any other cloud node, supports a set of specific scripts.
Jira Cloud Custom scripts cannot be deployed in this environment.

Check out List of external scripts for Jira Cloud for more information.

2. Create BasicFieldSync.groovy file with the following code, and store it in the right

location on your server. There is no need to restart instance/add-on to enable the external

script.


https://exalatedocs.knowledgeowl.com/docs/external-scripts-library-with-a-bit-of-tlc

class BasicFieldSync

{
static receive(issue,
replica,
nodeHelper,
commentHelper,
attachmentHelper) {
issue.summary = replica.summary
issue.description = replica.description
issue.assighee = nodeHelper.getUserByUsername(replica.assignee?.username)
issue.reporter = nodeHelper.getUserByUsername(replica.reporter?.username)
issue.labels = replica.labels
issue.comments = commentHelper.mergeComments(issue, replica)
issue.attachments = attachmentHelper.mergeAttachments(issue, replica)
}
}

3. Call the BasicFieldSync.groovy script from the Sync Rules.

o Replace the script in the outgoing sync rules (create and change processors) as below:

Existing script

issue.summary = replica.summary

issue.description = replica.description

issue.assignee = nodeHelper.getUserByUsername(replica.assignee?.username)
issue.reporter = nodeHelper.getUserByUsername(replica.reporter?.username)
issue.labels = replica.labels

issue.comments commentHelper.mergeComments(issue, replica)
issue.attachments = attachmentHelper.mergeAttachments(issue, replica)

New script

BasicFieldSync.receive(
issue,
replica,
nodeHelper,
commentHelper,
attachmentHelper

Product
Now aseu have one file with basic synchronization rules. You can reuse it in outgoing sync
processgesiif@wzissues(create processor) and for existing issues(change processor). If you add
new @odae\into the BasicFieldSync.groovy, it is automatically executed in your incoming sync
rules\{tRelater@nid change processors).

Security (2

Pricing and Licensing [

Resources

Subscribe for a weekly Exalate hack [

Academy [

Blog [

YouTube Channel &

Ebooks £

Still need help?

Join our Community [

Visit our Service Desk £


https://exalate.com/who-we-are
http://sandbox-exalate-documentation.knowledgeowl.com/docs/release-history
http://sandbox-exalate-documentation.knowledgeowl.com/docs/glossary
http://sandbox-exalate-documentation.knowledgeowl.com/docs/exalate-api-reference-documentation
http://sandbox-exalate-documentation.knowledgeowl.com/docs/security
http://sandbox-exalate-documentation.knowledgeowl.com/docs/pricing-licensing
https://exalate.com/hack/?utm_campaign=ExalateHack&utm_medium=docs&utm_source=docs_home_page
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5



https://exalate.com/partners

