Comment Visibility - an Advanced Issue Sync Case

Last Modified on 01/28/2026 11:59 am EST

Introduction

Warning: Despite our best efforts, code can change without notice due to a variety of factors.
If you encounter an issue in any of the code shown here and find that a specific block of code

is not correct, or is causing errors, please check with the Community to find an updated
version.

One of our customers is using Exalate for an advanced use case, where comments need to be
handled differently based on the context in which they are created.

Challenge

There are 2 instances and 4 projects at play

e External Instance (label JSD)
with one service management project
¢ Internal Instance (Label INT) with 3 projects

Internal service management and 2 dev projects: dev project A and dev project B

Internal

= e
) Dev A
=<)E

DMZ External Internal
Service Desk Service Desk
Exalate
Connection
Requirements

The comment-related requirements are:

e Comments on the external service management need to go to the internal service
management and ripple through to the dev projects

e Comments on the dev project(s) should only go to the internal service management project

http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:Jira+on-premise
http://community.exalate.com

but not to the external service management
e Comments from the dev project on the internal service management must be restricted,
while the comments from the internal service management on the dev project must be open
e |f a comment is made on dev project A, then it should not ripple through to dev project B or

the original ticket (on the external service management)

Understanding the Challenge

There are 3 types of comments:

e Ticket comments made by customers on the external service management
e Service management comments made by support engineers on the internal service
management

e Dev comments made by developers on the dev project

This table depicts the required behavior whenever a comment is made on one project, how it
needs to be synced to the twin issue
(The column is the source)

Comment External Internal

Sync . . Dev Project Dev Project
. Service Service

Behavior B

Map (From/To) management management

Internal Service

management

External Service i
Restricted
management

Dev Project A Restricted

Dev Project B Restricted

I II |

Filtering out the Comments which should not be Exchanged

To meet the requirements

e Comments on the external service management need to go to the internal service
management and ripple through to the dev projects

e If a comment is made on dev project A, then it should not ripple through to dev project B or
the original ticket

e Comments on the dev project should only go to the internal service management project but

not to the external service management

The approach we choose was to have 3 different synchronization users. These are functional
accounts that define the connection which created the comment

e SyncJSD (which is the proxy user)
e SyncConl
e SyncCon2

The incoming sync processor of the internal connections has the following logic to impersonate
the comment

The Incoming sync processor of the connections contains the following statement:

// set the author of the twin comment to SyncConl

issue.comments = commentHelper.mergeComments(issue, replica, {
comment ->
comment.executor = nodeHelper.getUserByUsername("SyncCon1")
comment

})

Note: In the second connection, you would use SyncCon2.

And in the outgoing sync processor, you exclude the comments which are exchanged over the
other connection as follows

replica.comments = issue.comments.findAll { comment ->
comment.author.username == "SyncConl" ||
lcomment.author.username.contains("SyncCon")

}

Note: Change the name to SyncCon2 for the second connection.

Why Would this Work?

Whenever a comment is made on the internal service management project, it is either created by
a user, the Sync)SD user (when it comes from the external connection), the SyncConl or the
SyncCon2 user (when it comes from the dev projects). The

statement lcomment.author.username.contains("SyncCon") filters out all comments that are
created in the other dev project, but all other comments pass through.

Whenever a comment is created by the SyncJSD user (ie the customer comment), the
comment.author.username is 'SyncJSD', and included in the sync message from the internal
service management to both development projects, as it passes the condition.

Ok - the First Hurdle Met - What's Next?

e Comments from the dev project on the internal service management must be restricted,

while the comments from the internal service management on the dev project must be open

The way to restrict the comment is explained in 'How to manage comment visibility'. By setting

https://exalatedocs.knowledgeowl.com/docs/how-to-manage-comment-visibility-in-jira-on-premise

the comment.role level (check the comment object to the appropriate role, comments are
restricted. The challenge here is to apply this change only to the internal service management
project and not to the dev project.

The additional complexity is that there are multiple internal service management projects (kept
this for last). We decided to use the category to indicate the nature of the project. You could also
use other ways of finding out what the type of project it is, but this approach allows us to
demonstrate how one can work around a gap in the exalate product. Currently, there is no
category in the project object. As we don't have the time for the exalate team to update the
product, we can apply the following workaround

// fetch the project category using the Jira API

import com.atlassian.jira.component.ComponentAccessor

def projectManager = ComponentAccessor.projectManager

def jProject = projectManager.getProjectByCurrentKey(issue.projectKey)
def jCategory = jProject.projectCategoryObject

// If the category is 'Service management', set the role level to 'Team', else null

issue.comments = commentHelper.mergeComments(issue, replica, {
comment ->
comment.roleLevel = (jCategory.name == "Service management") ? "Team" : null
comment.executor = nodeHelper.getUserByUsername("SyncConl")
comment
})
Conclusion

You can create advanced synchronization use cases by combining the flexibility of Exalate with
the capabilities of Jira.

ON THIS PAGE
Introduction
Challenge
Requirements

Understanding the Challenge
Product

Ribtening out the Comments which should not be
Rxkhmegdidtory @

8llc<>s_st%rg Eirst Hurdle Met - What's Next?
API Reference 2

Sauelupion

Pricing and Licensing

Resources

Subscribe for a weekly Exalate hack [
Academy [

Blog @

YouTube Channel @

Ebooks

Still need help?

Join our Community 2

Visit our Service Desk [

Find a Partner [

https://exalatedocs.knowledgeowl.com/docs/comment-structure
https://exalatedocs.knowledgeowl.com/docs/project-structure
http://sandbox-exalate-documentation.knowledgeowl.com/#Introduction0
http://sandbox-exalate-documentation.knowledgeowl.com/#Challenge1
http://sandbox-exalate-documentation.knowledgeowl.com/#Requirements2
http://sandbox-exalate-documentation.knowledgeowl.com/#UnderstandingtheChallenge3
http://sandbox-exalate-documentation.knowledgeowl.com/#FilteringouttheCommentswhichshouldnotbeExchanged4
http://sandbox-exalate-documentation.knowledgeowl.com/#OktheFirstHurdleMetWhatsNext5
http://sandbox-exalate-documentation.knowledgeowl.com/#Conclusion6
https://exalate.com/who-we-are
http://sandbox-exalate-documentation.knowledgeowl.com/docs/release-history
http://sandbox-exalate-documentation.knowledgeowl.com/docs/glossary
http://sandbox-exalate-documentation.knowledgeowl.com/docs/exalate-api-reference-documentation
http://sandbox-exalate-documentation.knowledgeowl.com/docs/security
http://sandbox-exalate-documentation.knowledgeowl.com/docs/pricing-licensing
https://exalate.com/hack/?utm_campaign=ExalateHack&utm_medium=docs&utm_source=docs_home_page
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

